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Abstract Land subsidence caused by groundwater over-pumping threatens the sustainable development in Beijing. Hazard 

assessments of land subsidence can provide early warning information to improve prevention measures. However, uncertainty 

and fuzziness are the major issues during hazard assessments of land subsidence. We propose a method that integrates fuzzy 20 

set theory and weighted Bayesian model (FWBM) to evaluate the hazard probability of land subsidence measured by 

Interferometric Synthetic Aperture Radar (InSAR) technology. The model is structured as a directed acyclic graph. The hazard 

probability distribution of each factor triggering land subsidence is determined using Bayes’ theorem. Fuzzification of the 

factor significance reduces the ambiguity of the relationship between the factors and subsidence. The probability of land 

subsidence hazard under multiple factors is then calculated with the FWBM. The subsidence time-series obtained by InSAR 25 

is used to infer the updated posterior probability. The upper and middle parts of the Chaobai River alluvial fan is taken as a 

case-study site, which locates the first large-scale Emergency Groundwater Resource Region in Beijing plain. The results show 

that rates of groundwater level decrease larger than 1 m/y in the confined and unconfined aquifers, compressible layer 

thicknesses between 160 and 170 m, and Quaternary thicknesses between 400 and 500 m yield maximum hazard probabilities 

of 0.65, 0.68, 0.32, and 0.35, respectively. The overall hazard probability of land subsidence in the study area decreased from 30 

51.3% to 28.3% between 2003 and 2017 due to lower rates of groundwater level decrease. This study provides useful insights 

for decision-makers to select different approaches for land subsidence prevention. 
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1. Introduction  

The continuous over-pumping of groundwater results in dramatic piezometric drawdown and induces regional land subsidence. 35 

Many countries such as China, Mexico, Italy, USA, Spain, Iran (Teatini et al., 2005; Tomás et al., 2010; Galloway and Burbey, 

2011; Chaussard et al., 2014; Zhu et al., 2015; Motagh et al., 2017), has reported the land subsidence due to groundwater 

pumping. Land subsidence is a complex process influenced by the anthropogenic activities and geological environment. The 

anthropogenic extraction of groundwater from aquifer is the principal triggering factor because the rapid decline in the 

groundwater level leads to the compaction of the aquitard, and consequently, the land surface subsides (Xue et al., 2005; Zhu 40 

et al., 2015; Gao et al., 2018). Although the drops of groundwater level in aquifers lead to the land subsidence, but this process 

is also controlled by the geological environment which includes hydrologic and geomechanic conditions (Zhu et al., 2015, 

2017; Gambolati and Teatini, 2015). Terzaghi’s effective stress principle shows that a decrease in the pore pressure leads to an 

increase in the effective stress which consequently induces land subsidence, and this process is related to the soil mechanical 

properties (Bonì et al., 2020). Land subsidence threatens the environment and cause economic losses, such as municipal 45 

infrastructure damage, building fracture and increasing flood risk (Wu et al., 2017; Peduto et al., 2017; Wang et al., 2018). 

Assessments of the subsidence hazard are necessary for risk prevention. 

Recent studies have analyzed the hazards of land subsidence to buildings using field investigation and Interferometric Synthetic 

Aperture Radar (InSAR) technology (Julio-Miranda et al., 2012; Tomás et al., 2012; Bhattarai et al., 2017; Peduto et al., 2017). 

Some studies assessed the regional subsidence hazard and identified the high-risk area using spatial modelling method with 50 

GIS (Huang et al., 2012; Bhattarai et al., 2017), multi objective decision making (Jiang et al., 2012; Yang et al., 2013), and 

advanced methods along with fuzzy set theory (Tafreshi et al., 2019). These methods are usually subjective and qualitative. 

Land subsidence is a geological problem with various random natural variables. Hazard assessment is associated with an 

inherent degree of uncertainty, which includes aleatoric aspects due to randomness and epistemic aspects related to insufficient 

information (Kiureghiana and Ditlevsen, 2009). Aleatoric uncertainty may come from the randomness of natural variables, the 55 

validity of the data (Matthies, 2007). Epistemic uncertainty may be generated by inadequate expert knowledge and the selection 

of evaluation factors and their quantitative effects on a hazard (Vilares and Kording, 2011). The methods mentioned above do 

not fully consider these uncertainties. 

To avoid these disadvantages, some researchers have adopted more objective methods, such as evidence reasoning methods 

(Chen et al., 2014; Pradhan et al. 2014), numerical models based on the physical mechanism (Xu et al., 2015; Dai et al., 2016; 60 

Jia et al., 2018; Sundell et al., 2019), and machine learning (Park et al., 2012; Yi et al., 2017). However, numerical models 

require detailed geo-hydrological and geological parameters, which are difficult to collect for model initialization (Smith and 

Knight, 2019). Evidence reasoning has strict combination rules and becomes exponentially intensive from the computational 

point of view as the number of elements increases, although it can handle both certain and uncertain information regardless of 
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whether the information is complete or incomplete and precise or imprecise (Dai, 1999). Furthermore, the current studies are 65 

mainly focus on the identification and classification of hazard level without any quantitative analysis of the subsidence hazard 

or the hazard of single factor. 

The main challenges in the field are to reduce the uncertainty of hazard assessments and to find an objective and effective 

method to assess hazard areas and risks. The mentioned uncertainty can be represented with probabilities. Bayesian models 

(BMs) are powerful probability approaches to deal with uncertainty (Vilares and Kording, 2011). BMs have been widely 70 

applied in disaster hazard assessment, such as flood hazard and pipeline damage assessments (Liu et al., 2017; Zhang et al. 

2016). 

This paper proposes a fuzzy weighted BM (FWBM) that combines a weighted BM (WBM) and fuzzy set theory to evaluate 

the subsidence hazard probability and analyze the hazard probability for different rates of groundwater level change. The 

posterior probability was calculated using InSAR-derived land subsidence as the model input to reduce the epistemic 75 

uncertainty. This new approach is applied in the Chaobai River alluvial fan in Beijing, China, which locates the first large-

scale Emergency Groundwater Resource Region (EGRR) that supplies water to Beijing. The hazard probability inferenced 

with the proposed relatively objective method can offer scientific support for land subsidence early warning and prevention. 

2. Methodology 

2.1 InSAR technology 80 

InSAR is a microwave remote sensing technique that records the phase and amplitude of the electromagnetic waves of ground 

objects. The phase information is used to inversely determine the subsidence. Persistent Scattered InSAR (PS-InSAR) is the 

most popular technology for detecting time series of subsidence by calculating the differential interferometric phase of PS 

points with a detection accuracy of millimeters (Sun et al., 2017). The density of PS points can reach 450/km2 in urban areas 

(Ferretti et al. 2011). The differential interferometric phase Φ of each PS in the corresponding interferogram contains five 85 

components: the deformation phase along the line of sight (LOS), the topographic phase, the phase component due to the 

atmospheric delay, the orbital error phase, and the phase noise (Teatini et al. 2007). The deformation phase along the LOS can 

be extracted by removing other phase information. 

PS-InSAR technology includes four steps: 

(1) master image selection 90 

(2) construction of a series of interferograms 

(3) PS point selection 

(4) unwrapping phase 

2.2 FWBM method 
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2.2.1 Basic principle of BM 95 

BMs consider the probability distributions of random variables and can infer the posterior probability based on weakly 

informative prior probability to address uncertainty (Weise and Woger 1993). A BM consists of a set of random variables with 

complex causalities that can be plotted using a directed acyclic graph (DAG), where random variables are represented as 

eigenvector nodes (Ren et al. 2009). In DAG (Fig. 1(a)), the hazard factors related to land subsidence are parent nodes (𝑌𝑗), 

and the subsidence hazard is the child node (T). The arrows represent the probabilistic dependence between nodes (Korb and 100 

Nicholson 2003). 

Bayes’ theorem can be used to infer posterior probability distributions from weakly informative prior probability distributions 

through observed results (Verdin et al. 2019). The approach is formulated as follows: 

P(𝑌|𝑆) =
𝑃(𝑌)𝑃(𝑆|𝑌)

𝑃(𝑆)
                                                                                                                                                                            (1) 

where S represents the observed land subsidence; P(𝑌|𝑆) is the posterior probability of Y subject to S; 𝑃(𝑌) is the prior 105 

probability independent of S; 𝑃(𝑆|𝑌) is the likelihood function, representing the development of Y; and 𝑃(𝑆) is the marginal 

probability. 

For multiple factors in DAG, the jointly probability of multiple conditions can be expressed as 

P{𝑇|𝑌1, … , 𝑌𝑗 , … , 𝑌𝑚} = ∏ P(𝑇|𝑌𝑗)

𝑚

𝑗=1

                                                                                                                                                        (2) 

where 𝑌𝑗 is the j-th factor that influences T. 110 

2.2.2 FWBM construction 

The conditional independence assumption must be met for BMs. This assumption generally can be strictly met in geological 

studies (Webb and Pazzan 1998). WBMs use weighted assessment variables to relax the independence assumption and address 

the different contributions of parent nodes to child nodes (Webb and Pazzan 1998). It has been widely used in hazard-related 

analyses (Tang et al. 2018). However, the weight of each factor is determined by its importance to land subsidence, which is 115 

usually qualitative and fuzzy, such as decline of piezometric head being the main driver of subsidence, compaction of a 

compressible layer, or high static loads influencing subsidence (Chen et al., 2016; Li et al., 2017). The fuzziness of the 

contribution of the factors to land subsidence may cause ambiguity in weighting when determining the importance of the 

factors. These deviations can be modeled with fuzzy set theory which can express fuzziness through a membership function 

to objectively describe the relationship between land subsidence and the factors (Mentes and Helvacioglu 2011). Therefore, 120 

the fuzzification of factor importance is applied to eliminate ambiguity. With the fuzzy-based weight, the FWBM is constructed 

with the following equation, which is extended from Equation (2), to determine the probability of random variable T: 

P{𝑇|𝑌1, … , 𝑌𝑗 , … , 𝑌𝑚} = ∏ P(𝑇|𝑌𝑗)
𝑤F𝑗

𝑚

𝑗=1

                                                                                                                                                    (3) 
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where 𝑤F𝑗 is the fuzzy-based weight of 𝑌𝑗. 

The structure of the FWBM is shown in Fig. 1(b), which is an improvement of Fig. 1(a). The eigenvector nodes are fuzzy 125 

weighted.  

As spatial variables, the hazard probability of factors is calculated through its spatial features using BM. The spatial features 

of Yj are given by X, X={𝑋𝑗,1, 𝑋𝑗,2, … , 𝑋𝑗,𝑖−1, 𝑋𝑗,𝑖}, where 𝑋𝑗,𝑖 is defined as the i-th feature of the j-th factor, as shown in Fig. 

1(c). The value of i depends on the feature classification. Obviously, FWBM contains three parts, probability of 𝑌𝑗 which is 

consists of its spatial feature 𝑋𝑗,𝑖, probability of T,  130 

The hazard probability of spatial feature 𝑋𝑗,𝑖 at subsidence detection time k is calculated using the following equation, which 

is derived from Equation (1): 

P{𝑋𝑗,𝑖|S, 𝑡 = 𝑘} = P(𝑋𝑗,𝑖 , 𝑡 = 𝑘)
P{S|𝑋𝑗,𝑖 , 𝑡 = 𝑘}

P(S)
                                                                                                                                  (4) 

where P(𝑋𝑗,𝑖 , 𝑡 = 𝑘)  is the prior probability, with the initial value calculated with the feature grid number ratio; 

P{S|𝑋𝑗,𝑖, 𝑡 = 𝑘} is the conditional probability calculated with the ratio of the subsidence grid to the feature grid; and P(S) is 135 

the marginal probability, which is the sum of the probability of 𝑋𝑗,𝑖 and is calculated by the following equation: 

P(S) = ∑ P(𝑋𝑗,𝑖 , 𝑡 = 𝑘)P{S|𝑋𝑗,𝑖 , 𝑡 = 𝑘}

𝑛

𝑖=1

                                                                                                                                               (5) 

2.2.3 FWBM implementation 

In the FWBM framework (Fig. 2), a BM is used to infer the hazard probability with the fuzzification of factor importance to 

reduce the ambiguity of the relationship between hazard factors and land subsidence based on subsidence data obtained with 140 

InSAR technology. 

The first part is data processing to obtain the standardization dataset. The assessment hazard factors are derived first which are 

parent nodes (𝑌1, 𝑌2 … 𝑌𝑚) in the model structure from groundwater extraction and geological conditions. Additionally, the 

posterior probability in a BM can be adjusted by using the new observed events to reduce the epistemic uncertainty (Weise 

and Woger 1993). For assessments of land subsidence hazard, InSAR technology can be applied to obtain time series of land 145 

subsidence at regional scale. Therefore, the stack of SAR images are processed with PS-InSAR to obtain the time series of PS 

points that provided the subsidence information. The PS points form a continuous input dataset to update the posterior 

probability of the FWBM, thus reducing the uncertainty in the assessment process. Simultaneously, the subsidence data is also 

used to validate the hazard assessment outcome. Then, these two datasets are standardized into grid form and spatially 

connected using the spatial join tool in GIS for the statistical analysis of FWBM. 150 

The second part is the model implementation, which contains three modules corresponding to the three variables that should 

be inferred in FWBM, that is probability of 𝑌𝑗 and T, factor weight 𝑤F𝑗 . 

- The first module is inferring the subsidence hazard probability of 𝑌𝑗, P(𝑌𝑗). For a single factor, the posterior probability 
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distribution of subsidence hazard is inferred through its spatial feature 𝑋𝑗,𝑖 using the Bayesian theorem. As shown in Fig. 3(a), 

the hazard probability of 𝑋𝑗,𝑖 P{𝑋𝑗,𝑖|S, 𝑡 = 𝑘} is calculated using Equation (4) and Equation (5) with the calculated prior 155 

probability P(𝑋𝑗,𝑖 , 𝑡 = 𝑘) and conditional probability P{S|𝑋𝑗,𝑖 , 𝑡 = 𝑘} at subsidence detection time k. The prior probability 

and conditional probability are calculated through spatial statistical analysis with the land subsidence data. This step is iterated 

when new subsidence event was observed (new PS points detected and as input) to update the posterior probability. 

- The second module is calculating the fuzzy-based weight WFj. Fuzzification of the factor importance is processed by 

establishing fuzzy pairwise comparison matrices (f_PCM). According to the analytic hierarchy process (AHP) method, the 160 

pairwise comparison criteria was divided into five levels represented with odd numbers from 1-9 (Saaty 1980). The five levels 

were regarded as fuzzy numbers, and the medium level was considered to be equally important. The value of each level was 

expressed as a triangular fuzzy number which is commonly used to express fuzziness (Mentes and Helvacioglu 2011). Based 

on the constructed f_PCM, WFj was calculated by the fuzzy extended AHP method (Van and Pedrycs 1983).  

- The third module is inferring the probability of T, P(T). The hazard probability influenced by multiple factors is derived using 165 

the FWBM. As shown in Fig. 3(b), with the probability density P(𝑌𝑗) and factor weights, the gridded hazard probability of land 

subsidence P(T) is implemented using Equation (3). The hazard probability map is reclassified using the natural breaks (Jenks) 

classification method, which is widely used in risk evaluation (Suh et al. 2016; Liu et al., 2017), and compared with the InSAR 

detected subsidence to validate the assessment results. 

3. Case study 170 

3.1 Description of the study area 

The study area belongs to the upper-middle part of the Chaobai River alluvial fan in the northern Beijing plain and covers 

approximately 1,350 km2 (Fig. 4). The Huairou EGRR is located in this area and was designed to ensure the urban water supply 

in continuous dry or emergency conditions. Long-term groundwater over-pumping has caused rapid decreases in the 

groundwater level, with a maximum value of approximately 40 m after the operation of the EGRR in 2003 (Zhu et al., 2015, 175 

2016). This significant drop resulted in regional land subsidence. To relieve the situation, the South-to-North Water Transfer 

Project-Central Route (SNWP-CR) was implemented at the end of 2014. 

3.2 Datasets and processing 

In this study, the rates of groundwater level change in confined (Y1 with the feature expressed as X1,i, i=1…4) and unconfined 

(Y2 with the feature expressed as X2,k, k=1…4) aquifers which reflecting the groundwater drawdown, the cumulative 180 

thicknesses of the compressible layers (Y3 with the feature expressed as X3,m, m=1…17), and the thickness of the Quaternary 

unit (Y4 with the feature expressed as X4,n, n=1…14) which reflecting the geological conditions were chosen as hazard factors. 

The four factors are classified according to the data characteristics and mapped in Fig. 5. 
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The datasets of factors cover three periods:  

(1) From January 2003 to December 2010, a period of massive groundwater exploitation after the operation of the EGRR. 185 

(2) From January 2011 to December 2014, the rate of decline in the groundwater level slowed due to the long-term loss of 

groundwater and increased rainfall (Zhang et al. 2015). 

(3) From January 2015 to December 2017, operation of the SNWP-CR partially relieved groundwater exploitation. 

A total of 125 SAR images were collected, including 37 ASAR images from June 2003 to January 2010, 38 RADARSAT-2 

images from November 2010 to November 2014, and 50 Sentinel-1 images from December 2014 to December 2017. The 190 

subsidence results were validated and calibrated with an extensometer station and benchmark data (the location is shown in 

Fig. 4), with an error of ±7 mm (Zhu et al. 2015, 2020a). The PS points with a subsidence rate above 10 mm/y were regarded 

as subsidence points. 

The study area was gridded into 5,664 cells, with a cell size of 500 m  500 m. Grid sizes of 200 m, 500 m, and 1000 m were 

compared. The assessment results for the 200 m grid size were similar to the results for the 500 m grid size with less smooth 195 

edges but a higher computational cost. The results for the 1000 m grid size displayed a low resolution. All factors and 

subsidence data are connected to the grid and each grid ID has five features including four assessment factors and subsidence. 

3.3 Model implementation 

3.3.1 Weight computation 

The fuzzification of factor importance is expressed as a triangular fuzzy number considering the ambiguity between factors 200 

and subsidence. The fuzzy-based weights (WFj) of the factors are shown in Table 1. To compare the model performance when 

ambiguity was eliminated, we implemented the WBM with the non-fuzzy-based weight (Wj) calculated by the AHP method. 

Table 1 Fuzzy (WFj) and non-fuzzy-based (Wj) weights for the hazard factors 

 Y1 Y2 Y3 Y4 

WFj 0.32 0.12 0.38 0.18 

Wj 0.33 0.10 0.43 0.14 

3.3.2 Probability of 𝒀𝒋 inference 

The hazard probability of feature 𝑋𝑗,𝑖 P{𝑋𝑗,𝑖|S, 𝑡 = 𝑘} is calculated first. For example, 𝑋3,12 is the twelfth feature of the 205 

compressible layer thickness (𝑌3), indicating that the thickness is between 160 m and 170 m. The prior probability P(𝑋3,12) 

was calculated based on the ratio of the feature grid number to the total number of grids in the study area. The conditional 

probability P{S|𝑋3,12, 𝑓𝑟𝑜𝑚 2003 𝑡𝑜 2010} is the percentage of grid cells for which subsidence occurred in feature 𝑋3,12 

from 2003 to 2010, which is used as input for the FWBM. P{S} is the sum of P{S|𝑋3,12, 𝑓𝑟𝑜𝑚 2003 𝑡𝑜 2010} calculated 

based on Equation (5). The posterior hazard probability P{𝑋3,12|S , 𝑓𝑟𝑜𝑚 2003 𝑡𝑜 2010} is calculated using Equation (4). 210 

When the subsidence data from 2011 to 2014 or from 2015 to 2017 are used as input, this step is conducted in the same way 
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that it was for the period from 2003 to 2010, and the posterior hazard probability at a previous time is set as the prior probability 

at the current time. 

3.3.3 Probability of T inference 

With the probability of single factor and factor weights, the hazard probability of T, P(T) is then calculated. Since there was 215 

no confined aquifer and the subsidence was relatively low in the northern part of the study area, the hazard probability in these 

areas were set as 0.01. 

4. Results and discussion 

4.1 Validation of the results 

The proposed FWBM was successfully applied to assess the subsidence hazard probability in the upper and middle part of the 220 

Chaobai River alluvial fans from 2003 to 2017. The hazard assessment distribution was reclassified into 7 grades (Fig. 6(a)). 

A hazard probability less than 0.07 indicates a low hazard region, and a hazard probability greater than 0.15 indicates a high 

hazard area (Fig. 6(b)). 

The changes in the land subsidence rate (Sr) detected by InSAR (Fig. 6(c)) between 2010-2014 and 2015-2017 were utilized 

to validate the assessment results. A positive value means the subsidence rate decreased (SrD), and a negative value means the 225 

subsidence rate increased (SrI). The total match ratio is 85% (Table 2). Notably, the reason that SrD was located in the high 

hazard region is that the piezometric level continuously decreased and the thick of compressible layers is large, additionally 

this area had high subsidence rate larger than 50mm/y as of 2017 (Zhu et al. 2020a, b). 

4.2 Comparison of the FWBM and the WBM 

The FWBM assessment results were compared with the results from a WBM that ignored the ambiguity in the hazard 230 

assessment framework. The WBM results were also divided into 7 levels. The levels of change between them were calculated 

(Fig. 7(a)); a negative value means the WBM had a higher hazard level, and a positive value means the WBM had a lower 

hazard level than the FWBM. In terms of the subsidence rate change (Fig. 6(c)), the WBM overestimated the subsidence hazard 

level for area 1 (Fig. 7(b)) and partially overestimated the level for area 2 (Fig. 7(c)) for subsidence rate decreases in these 

areas. In addition, the WBM underestimated the hazard level for area 3 (Fig. 7(d)), where the subsidence rate increased. The 235 

FWBM performed better in regions with SrD and had a higher total match ratio than the WBM, as shown in Table 2. 

Table 2. Comparison of the match ratio obtained with FWBM and WBM 
 

FWBM WBM 

Number of SrI Number of SrD Number of SrI Number of SrD 

High hazard area 1473 189 1497 274 

Low hazard area 199 766 175 681 

Percentage 88% 80% 89% 71% 
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Total match ratio 85% 82% 

4.3 Effect of assessment factors on hazard probability 

The hazard probability of assessment factors is shown in Fig. 8. Taking the period from 2015 to 2017 as an example, for the 

rate of groundwater level change in the confined aquifer, a rate reduction greater than 1 m/y has a maximum hazard probability 240 

of 0.65. The situation is the same for the rate of groundwater change in the unconfined aquifer; the maximum hazard probability 

is 0.68 when the rate reduction exceeds 1 m/y. The results show that the higher reduction rate of groundwater level, the higher 

hazard probability, this is consistent with previous studies which revealed that the rapid decline in the groundwater level leads 

to the land surface subside (Tomás et al., 2010; Galloway and Burbey, 2011; Zhu et al., 2015). Compressible layer thicknesses 

between 160 m and 170 m yield a maximum hazard probability of 0.32, and Quaternary thicknesses between 400 m and 500 245 

m yields a maximum hazard probability of 0.35. This is consistent with other studies which showed that subsidence mainly 

occurred over the area where the compressible layer thickness exceeds 100 m (Lei et al. 2016). 

4.4 Temporal change in subsidence hazard 

Because land subsidence is negligible in the north part of the study area (Zhu et al. 2015), where there is a uniform unconfined 

sandy gravel layer with a small occurrence of compressible soils, the regions with confined aquifers were used to analyze the 250 

temporal change in the hazard probability of land subsidence. As shown in Fig. 6(a), the subsidence hazard probability in 

Niulanshan decreased from 2003 to 2017. However, the southwest part always maintains a high hazard probability, especially 

in Tianzhu and Nanfaxin, where groundwater level changes exceeded 1 m/y and the thickness of the cumulative compressible 

sediments exceeds 150 m. 

Fig. 9 shows that the subsidence hazard probability value was between 0.01% and 51.30% from 2003 to 2010, between 0.01% 255 

and 45.54% from 2011 to 2014, and between 0.01% and 28.33% from 2015 to 2017. 

Overall, the subsidence hazard decreased. This should be credited to the implementation of water resource exploitation and 

utilization policies. From 2003 to 2010, the operation of the EGRR led to rapid drawdown. From 2015 to 2017, the operation 

of the SNWP-CR conveyed a large amount of water to Beijing, reducing the pressure on the groundwater and slowing the rate 

of change in the groundwater level. Notably, the California State Water Project which also is a large water-transfer system has 260 

been fundamental to control land subsidence (Zhu et al., 2020b). 

4.5 Spatial distribution of subsidence hazard 

Four subsidence hazard levels were classified from the probability map (Fig. 6(b)), consistent with previous studies (Yang et 

al. 2013; Zhu et al. 2015). The high hazard covered 10.7% of the total area, and the medium hazard accounted for 17.5% of 

the total area. The low and very low hazards represented 29.7% and 42.1% of the total area, respectively. As the thickness of 265 

the compressible sediments increases from the north to the south, the subsidence hazard probability increased accordingly. 
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Tianzhu, Nanfaxin, Gaoliying, and Houshayu in the southwestern region experienced medium-high hazards because the 

compressible strata in these areas are thick and the groundwater table dropped significantly. The InSAR results also revealed 

that the maximum subsidence rate in these regions increased to 84.9 mm/y from 2015-2017. Overall, the area of high 

subsidence hazard decreased due to the reduction in the rate of groundwater level change.  270 

5. Conclusions 

Considering the ambiguity of the importance of various factors controlling land subsidence due to groundwater pumping and 

the uncertainty in the assessment process, the FWBM model was constructed to assess the probability of land subsidence 

hazards at a regional scale by combining a BM and fuzzy set theory. The InSAR technology was used to obtain land subsidence 

time series to adjust the posterior probability of the FWBM thus reducing the model uncertainty.  275 

The implementation of the FWBM in the Beijng area demonstrated the potentiality of this modelling approach and showed 

that it is superior when the ambiguity of the relationship between the factors and the subsidence is considered. The study is a 

first analysis of the hazard probability of land subsidence and the related hazard factors. From the case study, we found that 

subsidence probability decreased over time at three periods due to change of water utilization, such as the operation of the 

SNWP-CR. When groundwater level reduction rates are greater than 1 m/y in the unconfined and confined aquifers, it yields 280 

maximum hazard probabilities of 0.68 and 0.65, respectively. When compressible layer thicknesses are between 160 m and 

170 m, it yields a maximum hazard probability of 0.32. When Quaternary strata thicknesses are between 400 m and 500 m, it 

yields a maximum hazard probability of 0.35. The overall subsidence hazard probability of the study area decreased from 

51.3% to 28.3% between 2003 and 2017 due to the decrease in the groundwater level reduction rate.  

The results of this study suggest that the proposed subsidence hazard assessment method significantly represents the 285 

uncertainty and ambiguity compared to traditional qualitative methods (Huang et al., 2012; Park et al., 2012; Yang et al., 2013; 

Chen et al., 2014; Tafreshi et al., 2019; Sundell et al., 2019). The hazard probability map of different time period with different 

groundwater level conditions can offer scientific support for land subsidence early warning and help stakeholders and decision-

makers to develop more reliable water utilization strategies taking into account the land subsidence hazards. 

The prior probability in this model is determined by the factor grid number ratio, which may have deviations. This ratio can 290 

be further improved by expert knowledge. Additionally, the impact of the selected assessment factors on the results may be 

discussed in our next-step study. The subsidence conditions that reflecting the severity of subsidence (such as cumulative 

subsidence and subsidence rate) should be considered to assess the subsidence hazard in the future from a more comprehensive 

perspective. 
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Fig. 1 (a) DAG of the BM structure; (b) FWBM structure; (c) spatial features of the hazard factors (Yj, for example) 
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Fig. 2. Flowchart of subsidence hazard assessment using the FWBM 410 

 

Fig. 3. Flowchart of infer (a) subsidence hazard probability of a single factor and (b) subsidence hazard probability influenced by 

multiple factors 
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Fig. 4. Location of the study area (the digital elevation model data is from the Shuttle Radar Topography Mission - SRTM -database; 415 

the administrative map is from the Beijing Institute of Geo-Environment Monitoring) 
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Fig. 5. Assessment factors: (a1-3) Rate of groundwater level change in the unconfined aquifer (2003-2010, 2011-2014, 2015-2017, 

respectively. Negative values mean lowering); (b1-3) Rate of groundwater level change in the confined aquifer system (2003-2010, 

2011-2014, 2015-2017, respectively. Negative values mean lowering); (c) Compressible layer thickness; (d) Quaternary thickness 420 
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Fig. 6. (a) Assessment of the subsidence hazard probabilities from 2003 to 2010, 2011 to 2014, and 2015 to 2017; (b) Subsidence 

hazard level (2015-2017); (c) Change in land subsidence rate between 2010-2014 and 2015-2017 obtained by InSAR 

 

Fig. 7. (a) The subsidence hazard level of change between the FWBM and the WBM (a negative value means the WBM had a higher 425 

hazard level, and a positive value means the WBM had a lower hazard level than the FWBM). An amplification of areas (1), (2), and 

(3) highlighted in (a) is provided in (b), (c), and (d), respectively. The colored dots represent the subsidence rate same as figure 6(c) 

(the green dots represent the decreased subsidence rate which means a lower hazard probability, the red dots mean a higher hazard 

probability) 
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 430 

 
Fig. 8. Hazard probability of factors for the three time periods from 2003 to 2017 of the study area 

 

 

Fig. 9. Probability distribution of subsidence hazard for the three time periods from 2003 to 2017 of the study area 435 
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